面积S的最小值应为36,形状为梯形.
记∠AOD=α,则△AOB的面积=1/2 OA OB sinα,△COD的面积=1/2 OC OD sinα,△AOD的面积=1/2 OA OD sinα,△BOC的面积=1/2 OB OC sinα,显然有S△AOD*S△BOC=S△AOB*S△COD=64,所以S△AOD+S△BOC≥16,所以总面积的最小值为36.
当且仅当S△AOD=S△BOC时,取最小值.
此时OA:OC=OB:OD=1:2,则AB∥CD,且CD=2AB.所以四边形ABCD为梯形.