设A,B是n阶矩阵,如存在可逆矩阵P是P'AP=B 则成矩阵A,B相似 记为A~B 这里P'表示P的逆矩阵 下面一样
性质
A B有相同的特征值
A B有相同的即 也就是主对角线元素之和相等
R(A)=R(B)
|A|=|B|
以上这些是必要条件
A+kE~B+kE |A+kE|=|B+kE| R(A+kE)=R(B+kE)
A^T~B^T
如果A~B 且A B都可逆 则A'~B'
如果A~B,C则A~C
设A,B是n阶矩阵,如存在可逆矩阵P是P'AP=B 则成矩阵A,B相似 记为A~B 这里P'表示P的逆矩阵 下面一样
性质
A B有相同的特征值
A B有相同的即 也就是主对角线元素之和相等
R(A)=R(B)
|A|=|B|
以上这些是必要条件
A+kE~B+kE |A+kE|=|B+kE| R(A+kE)=R(B+kE)
A^T~B^T
如果A~B 且A B都可逆 则A'~B'
如果A~B,C则A~C