解
a7=a1+6d=4+6d
a10=a1+9d=4+9d
a1,a7,a10成等比数列,则
(4+6d)²=4*(4+9d)
16+36d²+48d=16+36d
36d²+12d=0
解得
d=0舍去,d=-1/3
sn
=n*a1+n*(n-1)*d/2
=4n-n*(n-1)/6
=11
24n-n*(n-1)=66
24n-n²+n=66
n²-25n+66=0
(n-3)(n-22)=0
n=3,或者n=22
a(n)=a1+(n-1)×d ≥0时,sn最大
a(n)=4-(n-1)/3≥0
(n-1)/3≤4
n-1≤12
n≤13
a(13)=0
当n=13时sn最大
s13=n*(a1+an)/2
=13(a1+a13)/2
=13*4/2
=26
=