:∵f(0)f(1)>0
∴c(3a+2b+c)>0,
又a+b+c=0即c=-a-b
所以(-a-b)(2a+b)>0
即2a2+3ab+b2<0
(2)由2a2+3ab+b2<0知a2≠0,
(b a )2+3(b a )+2<0
解得:-2<b a <-1(6分)
(3)∵|x1-x2|= (x1+x2)2-4x1x2═ 4b2...
:∵f(0)f(1)>0
∴c(3a+2b+c)>0,
又a+b+c=0即c=-a-b
所以(-a-b)(2a+b)>0
即2a2+3ab+b2<0
(2)由2a2+3ab+b2<0知a2≠0,
(b a )2+3(b a )+2<0
解得:-2<b a <-1(6分)
(3)∵|x1-x2|= (x1+x2)2-4x1x2═ 4b2...