a1=3/5,a(n+1)=an/(2an+1),
1.a2=(3/5)/(6/5+1)=3/11,
a3=3/17,
a4=3/23.
2.猜想an=3/(6n-1).
下面用数学归纳法证明:
n=1时公式显然成立.
假设n=k时ak=3/(6k-1),那么
a=[3/(6k-1)]/[6/(6k-1)+1]=3/(6k+5)=3/[6(k+1)-1],
即n=k+1时公式也成立.
∴对任意正整数n,公式都成立.
a1=3/5,a(n+1)=an/(2an+1),
1.a2=(3/5)/(6/5+1)=3/11,
a3=3/17,
a4=3/23.
2.猜想an=3/(6n-1).
下面用数学归纳法证明:
n=1时公式显然成立.
假设n=k时ak=3/(6k-1),那么
a=[3/(6k-1)]/[6/(6k-1)+1]=3/(6k+5)=3/[6(k+1)-1],
即n=k+1时公式也成立.
∴对任意正整数n,公式都成立.