设甲原有x,乙原有y,丙原有z,
则:甲抢乙后,甲有:x+y/2-1
乙有:y/2
乙抢甲后,甲有:(x+y/2-1)/2
乙有:y/2+(x+y/2-1)/2-1
甲抢丙后,甲有:(x+y/2-1)/2+z/2-1
丙有:z/2
由题知:
z/2=5
(x+y/2-1)/2+z/2-1=11
y/2+(x+y/2-1)/2-1=11
解得:
x=y=z=10(个)
即原来各猴都有10个桃子.
设甲原有x,乙原有y,丙原有z,
则:甲抢乙后,甲有:x+y/2-1
乙有:y/2
乙抢甲后,甲有:(x+y/2-1)/2
乙有:y/2+(x+y/2-1)/2-1
甲抢丙后,甲有:(x+y/2-1)/2+z/2-1
丙有:z/2
由题知:
z/2=5
(x+y/2-1)/2+z/2-1=11
y/2+(x+y/2-1)/2-1=11
解得:
x=y=z=10(个)
即原来各猴都有10个桃子.