设t = 1/x
原式 = (2/t^3 + 1/t ) sin2t / (1/t^2 + 1)
=(2 + t^2) sin2t / (t^3+t)
=2(2+t^2)t / (t^3+t)
=2(2+t^2) / (1 + t^2)
=2*2
=4
设t = 1/x
原式 = (2/t^3 + 1/t ) sin2t / (1/t^2 + 1)
=(2 + t^2) sin2t / (t^3+t)
=2(2+t^2)t / (t^3+t)
=2(2+t^2) / (1 + t^2)
=2*2
=4