1)
f'=2x+a
f'(x1)=2x1+a
f(x1)=x1^2+ax1
曲线y=f(x)在点M(x1,f(x1))处的切线为
l: y=(2x1+a)(x-x1)+x1^2+ax1
x2为直线l的根:代入上式得:
(2x1+a)(x2-x1)+x1^2+ax1=0
x2-x1=-(x1^2+ax1)/(a+2x1)
x2=x1-(x1^2+ax1)/(a+2x1)
=(ax1+2x1^2-x1^2-ax1)/(a+2x1)
=x1^2/(a+2ax1)
得证~
2)OM=(x1,f(x1))
ON=(x2,0)
OM*ON=x1x2>9a/16
x1^3/(2x1+a)>9a/16
x1