若|x-2y+1|+|x+y-5|=0,则x=______,y=______.

3个回答

  • 解题思路:根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”可得:x-2y+1=0,x+y-5=0,把两个等式联立成方程组,再解方程组即可.

    ∵|x-2y+1|+|x+y-5|=0,

    x−2y+1=0①

    x+y−5=0②,

    ①-②得,-3y+6=0,

    解得:y=2,

    把y=2代入①解得:x=3,

    ∴方程组的解为:

    x=3

    y=2,

    故答案为:3,2.

    点评:

    本题考点: 解二元一次方程组;非负数的性质:绝对值.

    考点点评: 此题主要考查了非负数的性质与解二元一次方程组,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).

    当它们相加和为0时,必须满足其中的每一项都等于0,根据这个结论可以解这类题目.