cosA=3/5 sinA=√(1-cos^2A)=4/5
tanB=2 cosB=1/√(1+tan^2B)=√5/5 sinB=2√5/5
sin(A+B)=sinAcosB+sinBcosA=(4/5)(√5/5)+(2√5/5)(3/5)=2√5/5
cos(A+B)=cosAcosB-sinAsinB=(3/5)(√5/5)-(4/5)(2√5/5)=-√5/5
∴sin2(A+B)=2sin(A+B)cos(A+B)=2*(2√5/5)(-√5/5)=-4/5
cosA=3/5 sinA=√(1-cos^2A)=4/5
tanB=2 cosB=1/√(1+tan^2B)=√5/5 sinB=2√5/5
sin(A+B)=sinAcosB+sinBcosA=(4/5)(√5/5)+(2√5/5)(3/5)=2√5/5
cos(A+B)=cosAcosB-sinAsinB=(3/5)(√5/5)-(4/5)(2√5/5)=-√5/5
∴sin2(A+B)=2sin(A+B)cos(A+B)=2*(2√5/5)(-√5/5)=-4/5