解题思路:作A关于BC的对称点F,连接EF,则EF就是所求的最短距离,再在Rt△OEF中,由勾股定理求得EF的值,即PA+PB的最小值.
作A关于BC的对称点F,连接EF,则EF就是所求的最短距离,再过点E作EO∥BC,交AB于点O,
∵AB=2,AD=4,E为CD边的中点,
∴OE=AD=4,OF=OB+BF=1+2=3,
在Rt△OEF中,EF2=OE2+OF2,
∴EF=
OE2+OF2=5.
故答案为:5.
点评:
本题考点: 轴对称-最短路线问题;勾股定理;矩形的性质.
考点点评: 本题考查了轴对称-最短路线问题,解题中利用了轴对称的性质、勾股定理和两点之间线段最短的知识.