sinb=1/√10
cosb=3/√10
tanb=1/3
tan(a+b)=(tana+tanb)/(1-tanatanb)
=(1/3+1/7)/(1-1/21)
=1/2
cos(a+b)^2=1/[1+tan(a+b)^2]=4/5
sin(a+b)^2=1/5
sin(a+b)=1/√5
sinb=1/√10
cosb=3/√10
tanb=1/3
tan(a+b)=(tana+tanb)/(1-tanatanb)
=(1/3+1/7)/(1-1/21)
=1/2
cos(a+b)^2=1/[1+tan(a+b)^2]=4/5
sin(a+b)^2=1/5
sin(a+b)=1/√5