设数列的前n项和为Tn,前n项的前n项和为Sn,则
Tn=a1+a2+...+an,Sn=T1+T2+...+Tn
∴Tn=Sn+1-Sn;
an=Tn+1-Tn
=(Sn+2-Sn+1)-(Sn+1-Sn)
=Sn+2+Sn-2Sn+1
=[3^(n+2)-2]+[3^(n)-2]-2*[3^(n+1)-2]
=3^(n+2)+3^n-2*3^(n+1)
=9*3^n+3^n-2*3*3^n
=4*3^n
设数列的前n项和为Tn,前n项的前n项和为Sn,则
Tn=a1+a2+...+an,Sn=T1+T2+...+Tn
∴Tn=Sn+1-Sn;
an=Tn+1-Tn
=(Sn+2-Sn+1)-(Sn+1-Sn)
=Sn+2+Sn-2Sn+1
=[3^(n+2)-2]+[3^(n)-2]-2*[3^(n+1)-2]
=3^(n+2)+3^n-2*3^(n+1)
=9*3^n+3^n-2*3*3^n
=4*3^n