(1)当b=[3/2]时,S=[2/3]×[9/4]+[2/3]×[3/2]=[3/2]+1=[5/2];
(2)当S=4时,[2/3]b2+[2/3]b=4,
b2+b-6=0,
即(b+3)(b-2)=0,
∴b=-3或b=2,
又0<b<3,
∴b=2,代入得:
∴|AB|=S=|AB|•n•[1/2]=4,
∴n=3;
(3)S=n•[4/3]b•[1/2]=[2/3]b2+[2/3]b,得n=b+1,
又n=m+b=b+1,
∴m=1,
∴P(1,b+1),
Ⅰ:当PA=PB时,xB-xA=[4/3]b,
①(xB-1)2+(b+1)2=(xA-1)2+(b+1)2,
②[b+1
xB−1=
b
xA,
③联立三式,得:
xA=
4b2−3b/3
xB=
4b2+b
3]
代入②式得