如图,过D作DE∥BC,DF∥MN,
∵在梯形ABCD中,AB∥CD,DE∥BC,
∴CD=BE=5,AE=AB-BE=11-5=6
∵M为AB的中点
∴MB=AM=
12 AB=12×11=5.5,ME=MB-BE=6-5.5=0.5
∵N为DC的中点
∴DN=12DC=12×5=2.5
在四边形DFMN中,DC∥AB,DF∥MN,
所以FM=DN=2.5
故FE=FM+ME=2.5+0.5=3=12AE
故F为AE的中点.
又∵DE∥BC
∴∠B=∠AED
∵∠A+∠B=90°
∴∠A+∠AED=90°
故∠ADE=90°
即△ADE是直角三角形
∴DF=MN=12AE=12×6=3.