证明三角恒等式证明:三角形中(tanA/2)^2+(tanB/2)^2+(tanC/2)^2=1恒成立...

1个回答

  • 应该学过余弦定理吧

    先化简下面这个式子

    tan(a/2)=sin(a/2)/cos(a/2)

    =[2sin(a/2)cos(a/2)]/[2cos²(a/2)]

    =sina/(1+cosa)

    故tan²(a/2)=sin²a/(1+cosa)²

    =(1-cos²a)/(1+cosa)²

    =(1-cosa)/(1+cosa)

    (tanA/2)^2=(1-cosA)/(1+cosA)

    =[1-(b²+c²-a²)/(2bc)]/[1+(b²+c²-a²)/(2bc)]

    =[2bc-(b²+c²-a²)]/[2bc+(b²+c²-a²)]

    =(2bc-b²-c²+a²)/(b²+c²+2bc-a²)

    =[a²-(b-c)²]/[(b+c)²-a²]

    =[(a+b-c)*(a-b+c)]/[(a+b+c)*(b+c-a)]

    同理,有

    (tanB/2)^2=[(a+b-c)*(-a+b+c)]/[(a+b+c)*(a+c-b)]

    (tanC/2)^2=[(-a+b+c)*(a-b+c)]/[(a+b+c)*(b+a-c)]

    故(tanA/2)^2+(tanB/2)^2+(tanC/2)^2

    =[(a+b-c)*(a-b+c)]/[(a+b+c)*(b+c-a)]+[(a+b-c)*(-a+b+c)]/[(a+b+c)*(a+c-b)]+[(-a+b+c)*(a-b+c)]/[(a+b+c)*(b+a-c)]

    =1