向量OP=ON+NP
= ON +mNB(因为向量NP与向量NB共线,所以存在唯一实数m,使得NP =mNB)
=3a/4+m(OB-ON)
=3a/4+m(b-3a/4)
=(3/4-3m/4)a+mb.
另一方面,
因为向量OP与向量OM共线,所以存在唯一实数n,使得OP =nOM,
向量OP =nOM
=n(OA+AM)
= n(OA+2AB/3)
= n(OA+2/3(OB-OA))
= n(1/3OA+2/3OB)
=n/3a+2n/3b.
综上可知:向量OP=(3/4-3m/4)a+mb=n/3a+2n/3b.
所以3/4-3m/4=n/3,m=2n/3,
解得m=3/5,n=9/10.
∴向量OP= n/3a+2n/3b=3/10a+3/5b.