设正态总体服从N(U,V^2),X,S^2分别是样本均值和样本方差,容易得到
(X-U)/(V/根号n)~N(0,1)和(n-1)S^2/V^2~卡方(n-1) 的分布
由于V^2为未知,考虑到S^2是V^2的无偏估计,将V换成S=根号(S^2),
则有t分布的定义知:
[(X-U)/(V/根号n)]/{(n-1)S^2/[V^2(n-1)]}~t(n-1),
化简可得:
(X-U)/(S/根号n)~t(n-1),并且右边的分布t(n-1)不依赖与任何未知参数
设已给定置信水平为1-a,则根据t分布的图形可以得到:
P{-ta/2(n-1)