令a=∫[0→1] f(x)dx
则:f(x)=1/(1+x²)+ax³
两边积分得:
∫[0→1] f(x)dx
=arctanx+(a/4)x^4 |[0→1]
=π/4+a/4
因此:π/4+a/4=a,解得:a=π/3