an=a+(n-1)d 所以bn=a3n+1=a+(3n-1)d +1 所以bn-b[n-1] =a+(3n-1)d +1 -[a+ (3n-3-1)d +1] =3d 所以bn数列也是等差数列
已知{An}为等差数列,Bn=A3n+1,求证数列Bn为等差数列.
2个回答
相关问题
-
已知an为等差数列,bn=an+an+1 求证bn为等差数列
-
数列{an}为等差数列,数列{bn}满足bn=2an+1+a2n-1,证明{bn}为等差数列
-
数列{an},{bn}中,an=lg(3^n)-lg[2^(n+1)],bn=a2n,求证{bn}是否为等差数列
-
设数列{bn}为等差数列,求证bn=(a1+a2+...+an)/n(n属于正整数)为通项公式的数列{an}是等差数列
-
已知数列{an}中a1=2,an/n=[a(n-1)/(n-1)]+1,求证:bn=an/n,求数列{bn}是等差数列并
-
等差数列3已知{an}是公差为d的等差数列,bn=1/n*(a1+a2+...an),数列{an}、{bn}的前n项和分
-
数列an,bn满足bn=a1+2a2+3a3...nan\1+2+3+...n,若bn是等差数列,求证an是等差数列
-
已知等差数列{an}的前n项和Sn,且bn=Snn(n∈N*),求证:数列{bn}是等差数列.
-
数列{an}和{bn}满足an=1n(b1+b2+…+bn)(n=1,2,3…),求证{bn}为等差数列的充要条件是{a
-
已知数列{An}及数列{Bn}都为等差数列,Cn=An*Bn,那数列{Cn}是等差数列吗