(1)∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADC=90°,
∵AE平分∠DAC,
∴∠DAE=∠OAE,
又∵OA=OE,
∴∠OAE=∠OEA,
∴∠DAE=∠OEA,
∴AD ∥ OE,
∴∠ADE=∠OEC=90°,
∴OE⊥CD,
∴CD与⊙O相切;
(2)∵AF为圆O的直径,
∴∠AGF=90°,又∠ADE=90°,
∴∠ADE=∠AGF,
∴GF ∥ DC,
∴∠HFE=∠FEC,
又∵∠FEC=∠EAF,
∴∠HFE=∠EAF,
又∵∠HEF=∠FEA,
∴△HEF ∽ △FEA,
∴
EF
AE =
HE
EF ,
又∵HE=2,AE=AH+HE=2+
5
2 =
9
2 ,
∴EF 2=2×
9
2 =9,
∴EF=3.