an = a1+(n-1)d
S(5n) = (2a1+(5n-1)d)(5n)/2 (1)
S(3n)-S(2n)=(2a1+(3n-1)d)(3n)/2 - (2a1+(2n-1)d)(2n)/2
=(n/2)[ 3(2a1+(3n-1)d) - 2(2a1+(2n-1)d) ]
=(n/2)[ 2a1+ (5n-1)d] (2)
(1)/(2)
S(5n)/(S(3n)-S(2n)) =5
an = a1+(n-1)d
S(5n) = (2a1+(5n-1)d)(5n)/2 (1)
S(3n)-S(2n)=(2a1+(3n-1)d)(3n)/2 - (2a1+(2n-1)d)(2n)/2
=(n/2)[ 3(2a1+(3n-1)d) - 2(2a1+(2n-1)d) ]
=(n/2)[ 2a1+ (5n-1)d] (2)
(1)/(2)
S(5n)/(S(3n)-S(2n)) =5