设p(-2√2,t),M(x1,y1),N(x2,y2),因为|PM|=|PN|,所以p是MN的中点,所以:
-2√2=(x1+x2)/2;
t=(y1+y2)/2.
根据题意有:
x1^2/12+y1^2/4=1
x2^2/12+y2^2/4=1
相减得到:
(x1-x2)(x1+x2)/12+(y1-y2)(y1+y2)/4=0
(y1-y2)/(x1-x2)=-(x1+x2)/3(y1+y2),将上式代入得到:
(y1-y2)/(x1-x2)=4√2/3*2t=2√2/3t,这是MN的斜率,因为直线l1垂直MN,所以l1的斜率=-3t/2√2.
则l1的直线方程为:
y-t=-3t/2√2(x+2√2)
即:
y=-t(3x/2√2+2)
所以过定点(-4√2/3,0).