阶乘c(n,1)+c(n,2)+...+c(n,n)等于多少?
2个回答
2^n -1
二项式定理.
相关问题
C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)为什么等于什么
集合!C(0_n)+C(1_n)+...+C(n_n)为什么等于2^n.
(C0/n)²+(C1/n)²+(C2/n)²+…+(Cn/n)²值证明等于C2
阶乘的计算方法如下:result = (1)* (2)*…*(n-1)* n,在 C 语言实 现阶乘.
C1n+2C2n+4C3n+…+2n−1Cnn的值等于( )
C(0,n)+2C(1,n)+3C(2,n)+...+(r+1)C(r,n)+...+(n+1)C(n,n)=___(n
求C(n,0)+C(n,1)+C(n,2)+……C(n,n-1)+C(n,n)的值
C(n,1)+3C(n,2)+...+3^(n-1)C(n,n)=?
求和C(n,1)+2^2C(n,2)+.+n^2C(n,n)=?
组合:C(n,0)+C(n,1)+……+C(n,n)=n^2