先解P方程,对称轴小于零,两根之和,两根之积,得答都大于零,求出m取值范围.再解q方程,得答须小于零,解出取值范围,再根据两个都为假命题,求出最后范围.
求解!设P:方程x的平方+mx+1=0有两个不等的负根,
4个回答
相关问题
-
设p:方程X的平方+mX+1=0有两个不等的负根,q:方程4X的平方+4(m-2)X+1=0无实根.
-
已知p方程x2 mx 1=0有俩个不等的负根
-
以知p:方程x的平方 mx 1=0有两个不等的负根;Q:方程4乘x平方 4(m-2)x 1=0无实根,若P或Q为真,P且
-
一题:P:方程X方+MX+1=0有两个不等的负实根;Q:方程4X方+4(M-2)+1=0无实根,...
-
已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且
-
已知:p:x²+mx+1=0有两个不等的负根,q:方程4x²+4(m-2)x+1=0(m∈R)无实根
-
已知p:方程x 2 +mx+1=0有两个不等的负根;q:方程x 2 +(m﹣2)x+1=0无实根.若p∨q为真,p∧q为
-
命题p:方程X^2+2mx+1=0有两个不等的负根,q:方程x^2+(m-2)x+1=0无实根.如果p或q为真,p且q为
-
命题p:方程X^2+2mx+1=0有两个不等的负根,q:方程x^2+(m-2)x+1=0无实根.如果p或q为真,p且q为
-
已知p:关于x的方程x2+mx+1=0有两个不等的负实数根;q:关于x的方程4x2+4(m-2)x+1=0的两个实数根分