2(lgX)^2-lgX^4+1=0
2(lgx)^2-4lgx+1=0
a,b是方程的两个实数根
即lga,lgb是方程2t^2-4t+1=0的二个根.
韦达定理得:
lga+lgb=lgab=2
lga*lgb=1/2
lg(ab)·(loga b+logb a)
=2(lgb/lga+lga/lgb)
=2[(lgb)^2+(lga)^2]/lga*lgb
=2[(lga+lgb)^2-2lga*lgb]/(1/2)
=4[4-1]
=12
2(lgX)^2-lgX^4+1=0
2(lgx)^2-4lgx+1=0
a,b是方程的两个实数根
即lga,lgb是方程2t^2-4t+1=0的二个根.
韦达定理得:
lga+lgb=lgab=2
lga*lgb=1/2
lg(ab)·(loga b+logb a)
=2(lgb/lga+lga/lgb)
=2[(lgb)^2+(lga)^2]/lga*lgb
=2[(lga+lgb)^2-2lga*lgb]/(1/2)
=4[4-1]
=12