因为a属于(π/2π),b属于(0,π/2)
所以sin(a-b/2)=5/13,cos(b-a/2)=3/5
sin(a/2+b/2)=sin[(a-b/2)+(b-a/2)]
=sin(b-a/2)*cos(a-b/2)+sin(a-b/2)*cos(b-a/2)=63/65
因为a属于(π/2π),b属于(0,π/2)
所以sin(a-b/2)=5/13,cos(b-a/2)=3/5
sin(a/2+b/2)=sin[(a-b/2)+(b-a/2)]
=sin(b-a/2)*cos(a-b/2)+sin(a-b/2)*cos(b-a/2)=63/65