解题思路:根据万有引力提供向心力得出线速度与轨道半径的关系,根据线速度的变化,得出轨道半径的变化,从而得出角速度、向心加速度、周期的变化.
A、D、根据G
Mm
r2=m
v2
r,解得v=
GM
r,线速度变为原来的[1/2],知轨道半径变为原来的4倍.根据a=
v2
r,知向心加速度变为原来的[1/16].故A、D错误.
B、根据ω=[v/r]知,线速度变为原来的[1/2],知轨道半径变为原来的4倍,则角速度变为原来的[1/8].故B错误.
C、根据周期T=[2π/ω],角速度变为原来的[1/8].则周期变为原来的8倍.故C正确.
故选C.
点评:
本题考点: 人造卫星的加速度、周期和轨道的关系.
考点点评: 解决本题的关键掌握万有引力提供向心力这一理论,知道线速度、角速度、向心加速度、周期与轨道半径的关系.