1/2+1/2×1/2+1/2×1/2×1/2+.1/2×1/2×.×1/2
可看成一个公比是1/2的等比数列,设此数列有n个数值,其中
a1=1/2,a2=1/4,.an=1/(2^n),q=1/2
则数列的和:Sn=a1(1-q^n)/(1-q)=1/2[1-(1/2)^n]/(1-1/2)
1/2+1/2×1/2+1/2×1/2×1/2+.1/2×1/2×.×1/2
可看成一个公比是1/2的等比数列,设此数列有n个数值,其中
a1=1/2,a2=1/4,.an=1/(2^n),q=1/2
则数列的和:Sn=a1(1-q^n)/(1-q)=1/2[1-(1/2)^n]/(1-1/2)