lim (cosx)^(π/2-x)=lim e^[(π/2-x)lncosx]=e^{lim lncosx/[1/(π/2-x)]}
x->π/2- x->π/2- x->π/2-
=e^{lim (-sinx/cosx)/[1/(π/2-x)^2]}=e^{lim (-sinx)* lim (π/2-x)^2/sin(π/2-x)]
x->π/2- x->π/2- x->π/2-
=e^{lim (-sinx)* lim (π/2-x)* lim (π/2-x)/sin(π/2-x)]
x->π/2- x->π/2- x->π/2-
=e^(-1*0*1)
=1.
注意,本题只有当x负向趋近于π/2时,也即x->π/2- 时,才有极限值1存在.若x->π/2+,极限值就不存在,因为此时cosx->-0,而π/2-x->+0,当π/2-x以1/(2n),( n∈N),n逐渐增大的模式趋近于+0时,幂值无意义.