解题思路:(1)根据频率分布直方图能求出成绩在[14,16)内的人数,由此得到该班在这次百米测试中成绩为良好的人数.
(2)由频率分布直方图能求出众数落在第二组[15,16)内,由此能求出众数;数据落在第一、二组的频率是0.22<0.5,数据落在第一、二、三组的频率是0.6>0.5,所以中位数一定落在第三组中,假设中位数是x,则0.22+(x-15)×0.38=0.5,由此能求出中位数.
(3)成绩在[13,14)的人数有2人,成绩在[17,18)的人数有3人,由此能求出结果.
(1)根据频率分布直方图知成绩在[14,16)内的人数为:
50×0.18+50×0.38=28人.
∴该班在这次百米测试中成绩为良好的人数为28人.
(2)由频率分布直方图知众数落在第二组[15,16)内,
众数是[15+16/2=15.5.
∵数据落在第一、二组的频率=1×0.04+1×0.18=0.22<0.5,
数据落在第一、二、三组的频率=1×0.04+1×0.18+1×0.38=0.6>0.5,
∴中位数一定落在第三组中,
假设中位数是x,则0.22+(x-15)×0.38=0.5,
解得x=
299
19≈15.74,
∴中位数是15.74.
(3)成绩在[13,14)的人数有50×0.04=2人,
成绩在[17,18)的人数有;50×0.06=3人,
设m,n表示该班两个学生的百米测试成绩
∵m,n∈[13,14)∪[17,18],
∴事件“|m-n|>2”的概率
p=
C12
C13
C25]=[3/5].
点评:
本题考点: 古典概型及其概率计算公式;频率分布直方图.
考点点评: 本题考查众数、中位数的求法,考查概率的计算,是中档题,解题时要认真审题,注意频率分布直方图的合理运用.