AF⊥GF
∠BAF+∠AFB=∠AFB+∠GFH=90°
∠BAF=∠GFH
tan∠BAF=BF/AB=BF/(BF+FC)
CG平分∠DCH
∠DCG=∠GCH=∠CGH=45°
GH=CH
tan∠GFH=GH/FH=GH/(GH+FC)
BF/(BF+FC)=GH/(GH+FC)
所以BF=GH
AF⊥GF
∠BAF+∠AFB=∠AFB+∠GFH=90°
∠BAF=∠GFH
tan∠BAF=BF/AB=BF/(BF+FC)
CG平分∠DCH
∠DCG=∠GCH=∠CGH=45°
GH=CH
tan∠GFH=GH/FH=GH/(GH+FC)
BF/(BF+FC)=GH/(GH+FC)
所以BF=GH