因为 X*(X+1)*(X+2)*(X+3)=5040
可得 (x^2+3x)(x^2+3x+2)=5040
(x^2+3x)^2+2(x^2+3x)-5040=0
(x^2+3x)^2+2(x^2+3x)+72*(-70)=0
即(x^2+3x+72)(x^2+3x-70)=0
由判别式可知x^2+3x+72>0
所以x^2+3x-70=0
即(x-7)(x+10)=0
可得x1=7 ,x2=-10
因为 X*(X+1)*(X+2)*(X+3)=5040
可得 (x^2+3x)(x^2+3x+2)=5040
(x^2+3x)^2+2(x^2+3x)-5040=0
(x^2+3x)^2+2(x^2+3x)+72*(-70)=0
即(x^2+3x+72)(x^2+3x-70)=0
由判别式可知x^2+3x+72>0
所以x^2+3x-70=0
即(x-7)(x+10)=0
可得x1=7 ,x2=-10