解题思路:(I)由
b
n+1
=
b
n
2
+2
b
n
,知bn+1+1=
b
n
2
+2
b
n
+1
=(bn+1)2,由此能够证明{lg(bn+1)}是以2为公比的等比数列,并能求出bn.
(Ⅱ)焦点F(n,0),准线l:x=-n,分别过P,A作准线l的垂线,垂足为B,C,由抛物线的定义,得:|PF|=|PB|,|PA|+|PF|=|PA|+|PB|≥|AC|=1+n,故an=n+1,
S
n
=2×
2
0
+3×
2
1
+4×
2
2
+…+
(n+1)×2n-1,由此利用错位相减法能够求出Sn.
(Ⅲ)由anan+1=(n+1)•(n+2),知anan+2是偶数,故cos(πanan+1)=cos0=1,由此能够求出数列{cn}前n项的和Tn..
(I)∵bn+1=bn2+2bn,
∴bn+1+1=bn2+2bn+1=(bn+1)2,
∴lg(bn+1+1)=2lg(bn+1),
∴{lg(bn+1)}是以2为公比的等比数列,
∴lg(bn+1)=2n+1•lg(9+1)=2n+1,
∴bn=102n+1−1.
(Ⅱ)焦点F(n,0),准线l:x=-n,
分别过P,A作准线l的垂线,垂足为B,C,
由抛物线的定义,得:|PF|=|PB|,
|PA|+|PF|=|PA|+|PB|≥|AC|=1+n,
∴an=n+1,
∵an•lg(bn+1)=(n+1)•2n−1,
∴Sn=2×20+3×21+4×22+…+(n+1)×2n-1,①
∴2Sn=2×2+3×22+…+n×2n-1+(n+1)×2n,②
①-②,得-Sn=2+2+22+23+…+2n-1-(n+1)•2n=2+
2(1−2n−1)
1−2-(n+1)•2n,
∴Sn=n•2n.
(Ⅲ)∵anan+1=(n+1)•(n+2),
n+1,n+2是两个连续的整数,
∴anan+2是偶数,∴cos(πanan+1)=cos0=1,
∴cn=
1
cos
(n+1)π
3cos
(n+2)π
3,
∴cn+1=[1
cos[π+
(n+1)π/3]cos[π+
(n+2)π
3]]=cn,
∵c1=
1
cos
2π
3cosπ=2,
c2=
1
cosπcos
4π
3=2,c3=
1
cos
4π
3cos
5π
3=-4,
∴c1+c2+c3=0,
∵Tn=c1+c2+c3+…+cn,
∴当n=3k(k∈N+)时,Tn=3(c1+c2+c3)=0,
当n=3k+1,(k∈N+)时,Tn=k(c1+c2+c3)+c1=2,
当n=3k(k∈N+)时,Tn=k(c1+c2+c3)+c1+c2=4,
∴Tn=
点评:
本题考点: 数列与解析几何的综合;等比关系的确定;数列的求和.
考点点评: 本题考查等比数列的证明,考查数列的通项公式的求法,考查数列前n项和的求法,综合性强,难度大,解题时要认真审题,注意构造法和错位相减法的灵活运用.