y=(x+3)/(x²+5x+10)
=(x+3)/[(x+3)²-(x+3)+4]
当x+3=0时 x=-3
当x≠-3时,
分子分母同时除以x+3得
=1/[(x+3)-1+4/(x+3)]
因为
(x+3)+4/(x+3)≥2√[(x+3)×4/(x+3)]=4
或
(x+3)+4/(x+3)≤-2√[(x+3)×4/(x+3)]=-4
所以,值域为 [-1/5,1/3]
y=(x+3)/(x²+5x+10)
=(x+3)/[(x+3)²-(x+3)+4]
当x+3=0时 x=-3
当x≠-3时,
分子分母同时除以x+3得
=1/[(x+3)-1+4/(x+3)]
因为
(x+3)+4/(x+3)≥2√[(x+3)×4/(x+3)]=4
或
(x+3)+4/(x+3)≤-2√[(x+3)×4/(x+3)]=-4
所以,值域为 [-1/5,1/3]