f(x)=(sinx)^2+2√3sin(x+π/4)cos(x-π/4)-(cosx)^2-√3
=2√3[sin(x+π/4)]^2-cos2x-√3
=√3[1-cos(2x+π/2)]-cos2x-√3
=√3sin2x-cos2x
=2sin(2x-π/6),
(1)f(x)的最小正周期=π.
递减区间由(2k+1/2)π
f(x)=(sinx)^2+2√3sin(x+π/4)cos(x-π/4)-(cosx)^2-√3
=2√3[sin(x+π/4)]^2-cos2x-√3
=√3[1-cos(2x+π/2)]-cos2x-√3
=√3sin2x-cos2x
=2sin(2x-π/6),
(1)f(x)的最小正周期=π.
递减区间由(2k+1/2)π