y=(1/4)^x+(1/2)^x+1
=[(1/2)^x] ² +(1/2)^x+1
=[(1/2)^x+1/2] ²+3/4
因为(1/2)^x>0
故:(1/2)^x+1/2>1/2
故:[(1/2)^x+1/2] ²>1/4
故:y=[(1/2)^x+1/2] ²+3/4>1
即:值域为(1,+∞)
y=(1/4)^x+(1/2)^x+1
=[(1/2)^x] ² +(1/2)^x+1
=[(1/2)^x+1/2] ²+3/4
因为(1/2)^x>0
故:(1/2)^x+1/2>1/2
故:[(1/2)^x+1/2] ²>1/4
故:y=[(1/2)^x+1/2] ²+3/4>1
即:值域为(1,+∞)