(1)
f(x)=x²/(1+x²)
=1-1/(1+x²)
f(1/x)= 1-1/(1+1/x²)=1-1/[(1+x²)/x²]=1-x²/(1+x²)=1-f(x)
所以f(x)+f(1/x)= 1
f(1)+f(2)+f(3)+f(4)+f(1/2)+f(1/3)+f(1/4)
= f(1)+[f(2)+f(1/2)]+[f(3)+f(1/3)]+[f(4)+f(1/4)]
=1/(1+1)+1+1+1
=7/2
(1)
f(x)=x²/(1+x²)
=1-1/(1+x²)
f(1/x)= 1-1/(1+1/x²)=1-1/[(1+x²)/x²]=1-x²/(1+x²)=1-f(x)
所以f(x)+f(1/x)= 1
f(1)+f(2)+f(3)+f(4)+f(1/2)+f(1/3)+f(1/4)
= f(1)+[f(2)+f(1/2)]+[f(3)+f(1/3)]+[f(4)+f(1/4)]
=1/(1+1)+1+1+1
=7/2