过C作CF∥AB交AE延长线于F.
∵∠A=90°,
∴∠ACF=90°,
又AB=AC,∠DBA=∠CAF,
∴△ABD≌△CAF(ASA),
∴AD=CF,
D为AC中点,
∴CF=AC/2=AB/2,
∴BE/CE=AB/CF=2,
∴BE=2CE.
过C作CF∥AB交AE延长线于F.
∵∠A=90°,
∴∠ACF=90°,
又AB=AC,∠DBA=∠CAF,
∴△ABD≌△CAF(ASA),
∴AD=CF,
D为AC中点,
∴CF=AC/2=AB/2,
∴BE/CE=AB/CF=2,
∴BE=2CE.