1、x^4+2x²+81=x^4+2x²+16x²-16x²+9²=x^4+18x²+9²-16x²=(x²+9)²-16x²
=[(x²+9)+4x][(x²+9)-4x]=﹙x²+4x+9﹚﹙x²-4x+9﹚
2、x^4-18x²+1=x^4-18x²+81-81+1=(x²-9)²-80=[(x²-9)+4√5][(x²-9)-4√5]
=﹙x²-9+4√5﹚(x²-9-4√5﹚
3、(x²+5x+9)(x²-3x+7)-3(4x+1)²
=x^4+2x³-47x²-16x+60=﹙x^4+2x³﹚-﹙x²+2x﹚-﹙46x²+14x-60﹚
=﹙x^4+2x³﹚-﹙x²+2x﹚-2﹙23x²+7x-30﹚=x³﹙x+2﹚-x﹙x+2﹚-2﹙23x+30﹚﹙x-1﹚
=x﹙x+2﹚﹙x²-1﹚-2﹙23x+30﹚﹙x-1﹚=x﹙x+2﹚﹙x+1﹚﹙x-1﹚-2﹙23x+30﹚﹙x-1﹚
=﹙x-1﹚[x³﹙x+2﹚﹙x+1﹚-2﹙23x+30﹚]