(1)
f(x)=(1/a)e^x+ae^(-x) --------①
f(-x)=(1/a)e^(-x)+a(e^x) --------②
因f(-x)=f(x),所以
①-②得
(1/a)[e^x-e^(-x)]-a[e^x-e^(-x)]=[e^x-e^(-x)](1/a-a)=0
因为 e^x-e^(-x)≠0,所以 1/a-a=0,已知a>0,故而 a=1
∴ f(x)=e^x+e^(-x)
(2)
(因为不了解是否学过导数,下面用初等方法证明)
取x1,x2∈(0,+∞),设x2>x1
f(x2)-f(x1)=e^x2-e^x1+(1/e^x2)-(1/e^x1)
=(e^x2-e^x1)[1-1/(e^x2·e^x1)]
因为 e^x是R上的增函数,所以e^x2-e^x1>0
因为 x1>0,x2>0,∴1-1/(e^x2·e^x1)>0
于是 f(x2)>f(x1)
这就证明了f(x)在(0,+∞)上是增函数