做幂级数
f(x) = Σ(k>=1)[k(k+1)(x/2)^(k-1)],
利用逐项积分定理,得
g(x) = ∫[0,x]f(t)dt
= Σ(k>=1)k(k+1)∫[0,x][(t/2)^(k-1)]dt
= 2Σ(k>=1)[(k+1)(t/2)^k],
再积分
∫[0,x]g(t)dt
= Σ(k>=1)(k+1)∫[0,x][(t/2)^k]dt
= 4Σ(k>=1)[(t/2)^(k+1)]
= 4{1/[1-(x/2)] - 1 - x/2},
(接下来,两次求导,再取 x=1,即可得)……