直线x+√3y-2=0 圆(x-1)^2+y^2=1
设两交点即线段端点分别是(x1,y1)(x2,y2)
直线x+√3y-2=0 斜率k=-√3/3 y=(2-x)/√3代入圆中得(x-1)^2+(2-x)^2/3=1
(3x-1)^2+(2-x)^2=3
4x^2-10x+2=0 2x^2-5x+1=0 x1+x2=5/2 x1x2=-1/2
(x1-x2)^2=(x1+x2)^2-4x1x2=25/4-4*(-1/2)=33/4
|x1-x2|=3√3/2
截得的线段长 d=|x1-x2|/|k|=(3√3/2)/(√3/3) =9/2
或同求=(x1+x2)^2-4x1x2=25/4-4*(-1/2)=33/4
把x=2-√3y代入圆中用同样方法再求出(y1-y2)^2
也 能求出d=√[(x1+x2)^2+(y1-y2)^2〕=9/2