因为,2(a²+b²) = (a²+b²)+(a²+b²) ≥ (a²+b²)+2ab = (a+b)² = 1 ,
所以,a²+b² ≥ 1/2 ;
因为,(a+b)² = a²+b²+2ab ≥ 2ab+2ab = 4ab ,
所以,1/(ab) ≥ 4/(a+b)² = 4 ;
(a+1/a)²+(b+1/b)² = a²+b²+1/a²+1/b²+4 = (a²+b²)+(a²+b²)/(ab)²+4 ≥ 1/2+(1/2)*4²+4 = 25/2
因为,2(a²+b²) = (a²+b²)+(a²+b²) ≥ (a²+b²)+2ab = (a+b)² = 1 ,
所以,a²+b² ≥ 1/2 ;
因为,(a+b)² = a²+b²+2ab ≥ 2ab+2ab = 4ab ,
所以,1/(ab) ≥ 4/(a+b)² = 4 ;
(a+1/a)²+(b+1/b)² = a²+b²+1/a²+1/b²+4 = (a²+b²)+(a²+b²)/(ab)²+4 ≥ 1/2+(1/2)*4²+4 = 25/2