f(n)=f(n-1)*(n+1)/(n-1);
f(1)=2;
f(2)=f(1)*3/1=6
f(3)=f(2)*4/2=12
f(4)=f(3)*5/3=20
f(n)=(n+1)/(n-1)*f(n-1)=(n+1)/(n-1)*n/(n-2)*f(n-2)=)=(n+1)/(n-1)*n/(n-2)*(n-1)/(n-3)*f(n-3)
=(n+1)n/(2*1)*f(1)(n>=2)
所以f(2011)=2012*2011
f(n)=f(n-1)*(n+1)/(n-1);
f(1)=2;
f(2)=f(1)*3/1=6
f(3)=f(2)*4/2=12
f(4)=f(3)*5/3=20
f(n)=(n+1)/(n-1)*f(n-1)=(n+1)/(n-1)*n/(n-2)*f(n-2)=)=(n+1)/(n-1)*n/(n-2)*(n-1)/(n-3)*f(n-3)
=(n+1)n/(2*1)*f(1)(n>=2)
所以f(2011)=2012*2011