引入辅助函数g(x)=[f(x)-f(b)](x-a),就可以如图证明了.经济数学团队帮你解答,请及时采纳.
利用中值定理证明等式设f(x)在[a b]上连续,在(a b)内可导a
1个回答
相关问题
-
中值定理与等式证明设函数f(x)在[a,b]上连续,在(a,b)内可导,证明:至少存在一点x,使 [bf(b)-af(a
-
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈
-
微分中值定理习题!设函数 f在[a,b]上连续,在(a,b)内可导,且a*b>0.证明存在a一天了,
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
-
中值定理应用设f(x),g(x)在[a,b]上连续,(a,b)上可导,g(x)不为0,证明:则存在ξ∈(a,b),使[f
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)>a,f(b)
-
设f(X)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一个A,使[b*f(b)-a*f(a)
-
设f(x)在[a,b]上连续,在(a,b)内可导且f′(x)≤0,并有 证明:在(a,b)内有F'(x)≤0
-
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续
-
设函数f(x)在[a,b]上连续,在(a,b)内可导(0