设抛物线的方程y^2=2px(p>0),过抛物线焦点的直线交抛物线于A(x1,y1)B(x2,y2)

2个回答

  • (1)抛物线的焦点为(p/2,0),设直线方程为 x=my+p/2 ,

    代入抛物线方程得 y^2=2p(my+p/2) ,

    化简得 y^2-2pmy-p^2=0 ,

    因为 y1、y2 是方程的两个根 ,

    因此,由二次方程根与系数的关系可得 y1*y2= -p^2 ,

    所以 x1*x2= y1^2/(2p)*y2^2/(2p)=(y1*y2)^2/(4p^2)=p^4/(4p^2)=p^2/4 .

    (2)由于 |AB|^2=(x2-x1)^2+(y2-y1)^2=(m^2+1)*(y2-y1)^2=(m^2+1)*[(y1+y2)^2-4y1*y2]

    =(m^2+1)*[(2pm)^2-4*(-p^2)]=4p^2*(m^2+1)^2 ,

    因此,当 m=0 时,|AB| 最小 ,为 √(4p^2)=2p .