f(kx)=2sin(kx-π/3)+1首先周期t=2π/3 因为 t=2π/k=2π/3所以 k=3 因为x∈[0,π/3] 所以 kx∈[0,π]
记kx=n 故f(n)=2sin(n-π/3)+1 记u=n-π/3∈[-π/3,2π/3] 有两个不同解就是y=m与之有两个交点 根据函数图像可知 m∈[根号3+1,3]
f(kx)=2sin(kx-π/3)+1首先周期t=2π/3 因为 t=2π/k=2π/3所以 k=3 因为x∈[0,π/3] 所以 kx∈[0,π]
记kx=n 故f(n)=2sin(n-π/3)+1 记u=n-π/3∈[-π/3,2π/3] 有两个不同解就是y=m与之有两个交点 根据函数图像可知 m∈[根号3+1,3]