若该直线的斜率不存在,则有MA≠NA
所以该直线的斜率存在
设l[MN]:y-1=k(x-1)
{x^2+y^2=4
{y-1=k(x-1)
x^2+(kx-k+1)^2=4
(1+k^2)*x^2+(2k-2k^2)x+k^2-2k-3=0
令
(x1+x2)/2=1
所以
-(2k-2k^2)/(2(1+k^2))=1
k=-1
l[MN]:y-1=1-x
若该直线的斜率不存在,则有MA≠NA
所以该直线的斜率存在
设l[MN]:y-1=k(x-1)
{x^2+y^2=4
{y-1=k(x-1)
x^2+(kx-k+1)^2=4
(1+k^2)*x^2+(2k-2k^2)x+k^2-2k-3=0
令
(x1+x2)/2=1
所以
-(2k-2k^2)/(2(1+k^2))=1
k=-1
l[MN]:y-1=1-x