先由正弦定理:将边分部换成角的正弦得
sin^2Bsin^2C+sin^2Csin^2B=2sinBsinCcosBcosC
两边红去sinBsinC得(均不为0)
sinBsinC+sinCsinB=2cosBcosC
即sinBsinC=cosBcosC
移过来,即得cos(B+C)=0
B+C∈(0,π)
故B+C=π/2
△ABC是直角三角形.
先由正弦定理:将边分部换成角的正弦得
sin^2Bsin^2C+sin^2Csin^2B=2sinBsinCcosBcosC
两边红去sinBsinC得(均不为0)
sinBsinC+sinCsinB=2cosBcosC
即sinBsinC=cosBcosC
移过来,即得cos(B+C)=0
B+C∈(0,π)
故B+C=π/2
△ABC是直角三角形.